Revolutionizing Women’s health: the quest for materials for next-generation, non-hormonal intrauterine devices
United Nations, Contraceptive Use by Method 2019. (2019).
Cleland, J., Conde-Agudelo, A., Peterson, H., Ross, J. & Tsui, A. Contraception and health. Lancet 380, 149–156 (2012).
Google Scholar
Trussell, J. & Pebley, A. R. The potential impact of changes in fertility on infant, child and maternal mortality. Stud. Fam. Plann. 15, 267–280 (1984).
Google Scholar
Goldin, C. & Katz, L. F. The power of the pill: oral contraceptives and women’s career and marriage decisions. J. Polit. Econ. 110, 730–770 (2002).
Google Scholar
Mishell, D. R. Intrauterine devices: mechanisms of action, safety, and efficacy. Contraception 58, 45S–53S (1998).
Google Scholar
Ortiz, M. E. & Croxatto, H. B. Copper-T intrauterine device and levonorgestrel intrauterine system: biological bases of their mechanism of action. Contraception 75, S16–S30 (2007).
Google Scholar
Skovlund, C. W., Mørch, L. S., Kessing, L. V. & Lidegaard, Ø. Association of hormonal contraception with depression. JAMA Psychiatry 73, 1154–1162 (2016).
Google Scholar
Ewies, A. A. A. Levonorgestrel-releasing Intrauterine System – The discontinuing story. Gynecol. Endocrinol. 25, 668–673 (2009).
Google Scholar
Svahn, S., Niemeyer Hultstrand, J., Tydén, T. & Ekstrand Ragnar, M. Contraception use and attitudes: women’s concerns regarding hormonal contraception and copper intrauterine devices. Eur. J. Contracept. Reprod. Heal. Care 26, 473–478 (2021).
Google Scholar
Pletzer, B., Lang, C., Derntl, B. & Griksiene, R. Weak associations between personality and contraceptive choice. Front. Neurosci. 16, 898487 (2022).
Google Scholar
Baird, D. T. & Glasier, A. F. Hormonal Contraception. N. Engl. J. Med. 328, 1543–1549 (1993).
Google Scholar
Nelson, A. L. Intrauterine device practice guidelines: medical conditions. Contraception 58, 59S–63S (1998).
Google Scholar
Le Guen, M., Schantz, C., Régnier-Loilier, A. & de La Rochebrochard, E. Reasons for rejecting hormonal contraception in Western countries: A systematic review. Soc. Sci. Med. 284, 114247 (2021).
Google Scholar
Zipper, J. A., Tatum, H. J., Pastene, L., Medel, M. & Rivera, M. Metallic copper as an intrauterine contraceptive adjunct to the “T” device. Am. J. Obstet. Gynecol. 105, 1274–1278 (1969).
Google Scholar
Arendsen, L. P., Thakar, R. & Sultan, A. H. The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clin. Microbiol. Rev. 32, e00125–18 (2019).
Google Scholar
Bastidas, D. M., Valdez, B., Schorr, M. & Bastidas, J. M. Corrosion of copper intrauterine devices: review and recent developments. Corrosion Reviews 37, 307 (2019).
Google Scholar
Glasier, A. F. et al. Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis. Lancet (London, England) 375, 555–562 (2010).
Google Scholar
Hubacher, D., Chen, P.-L. & Park, S. Side effects from the copper IUD: do they decrease over time? Contraception 79, 356–362 (2009).
Google Scholar
Sivin, I. & Batár, I. State-of-the-art of non-hormonal methods of contraception: III. Intrauterine devices. Eur. J. Contracept. Reprod. Heal. Care 15, 96–112 (2010).
Google Scholar
Farr, G. & Amatya, R. Contraceptive efficacy of the Copper T380A and the Multiload Cu250 IUD in three developing countries. Adv. Contracept. 10, 137–149 (1994).
Google Scholar
Cox, M. & Blacksell, S. Clinical performance of the Nova-T®380 IUD in routine use by the UK Family Planning and Reproductive Network: 12-month report Health Research. Br. J. Fam. Plann. 26, 148 LP–148152 (2000).
Wildemeersch, D. et al. A multicenter study assessing uterine cavity width in over 400 nulliparous women seeking IUD insertion using 2D and 3D sonography. Eur. J. Obstet. Gynecol. Reprod. Biol. 206, 232–238 (2016).
Google Scholar
Timonen, H. Copper release from copper-T intrauterine devices. Contraception 14, 25–38 (1976).
Google Scholar
Reeves, M. F., Katz, B. H., Canela, J. M., Hathaway, M. J. & Tal, M. G. A randomized comparison of a novel nitinol-frame low-dose-copper intrauterine contraceptive and a copper T380S intrauterine contraceptive. Contraception 95, 544–548 (2017).
Google Scholar
Wildemeersch, D., Goldstuck, N. D. & Hasskamp, T. Intrauterine systems: a frameless future? Expert Opin. Drug Deliv. 13, 911–918 (2016).
Google Scholar
Baram, I., Weinstein, A. & Trussell, J. The IUB, a newly invented IUD: a brief report. Contraception 89, 139–141 (2014).
Google Scholar
Alvarez, F., Schilardi, P. L. & de Mele, M. F. L. Reduction of the “burst release” of copper ions from copper-based intrauterine devices by organic inhibitors. Contraception 85, 91–98 (2012).
Google Scholar
Jinying, L., Ying, L., Xuan, G., Yanli, G. & Jianping, L. Investigation of the release behavior of cupric ion for three types of Cu-IUDs and indomethacin for medicated Cu-IUD in simulated uterine fluid. Contraception 77, 299–302 (2008).
Google Scholar
Valko, M., Morris, H. & Cronin, T. D. M. Metals, Toxicity and Oxidative Stress. Current Medicinal Chemistry 12, 1161–1208 (2005).
Google Scholar
Gaetke, L. M., Chow-Johnson, H. S. & Chow, C. K. Copper: toxicological relevance and mechanisms. Arch. Toxicol. 88, 1929–1938 (2014).
Google Scholar
Chou, C.-H. et al. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device. Sci. Rep. 5, 15157 (2015).
Google Scholar
Sharma, P. et al. Cervico-vaginal inflammatory cytokine alterations after intrauterine contraceptive device insertion: A pilot study. PLoS One 13, e0207266 (2018).
Google Scholar
Yang, Z., Xie, C., Cai, S. & Xia, X. Effects of LDPE film on the properties of copper/LDPE composites for intrauterine contraceptive device. Mater. Lett. 62, 4226–4228 (2008).
Google Scholar
Ramakrishnan, R., Bharaniraja, B. & Aprem, A. S. Controlled release of copper from an intrauterine device using a biodegradable polymer. Contraception 92, 585–588 (2015).
Google Scholar
Zhang, C., Xu, N. & Yang, B. The corrosion behaviour of copper in simulated uterine fluid. Corros. Sci. 38, 635–641 (1996).
Google Scholar
Bertuola, M., Grillo, C. A. & Fernández Lorenzo de Mele, M. Eradication of burst release of copper ions from copper-bearing IUDs by a phytocompound-based electropolymeric coating. Mater. Lett. 252, 317–320 (2019).
Google Scholar
Xu, X. X. et al. Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. Mater. Lett. 64, 524–527 (2010).
Google Scholar
Xu, X. X. et al. Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomater 8, 886–896 (2012).
Google Scholar
Chen, B., Liang, C., Fu, D. & Ren, D. Corrosion behavior of Cu and the Cu–Zn–Al shape memory alloy in simulated uterine fluid. Contraception 72, 221–224 (2005).
Google Scholar
Skaanvik, S. A. & Gateman, S. M. Probing passivity of corroding metals using scanning electrochemical probe microscopy. Electrochem. Sci. Adv. n/a, e2300014 (2023).
Google Scholar
Fan, Q. et al. Effective easing of the side effects of copper intrauterine devices using ultra-fine-grained Cu-0.4Mg alloy. Acta Biomater 128, 523–539 (2021).
Google Scholar
Sezer, N., Evis, Z., Kayhan, S. M., Tahmasebifar, A. & Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloy. 6, 23–43 (2018).
Google Scholar
Wang, K. et al. Feasibility evaluation of a Cu-38 Zn alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomater 138, 561–575 (2022).
Google Scholar
Shankie-Williams, K., Lindsay, L., Murphy, C. & Dowland, S. Zinc as a non-hormonal contraceptive: a better alternative to the copper intrauterine device (IUD). bioRxiv 2022.03.24.485705 (2022).
Loewit, K. Iron as a contraceptive? I. In vitro-immobilization of human spermatozoa with iron-salts. Exp. Pathol. (Jena). 7, 198–201 (1972).
Google Scholar
Loewit, K., Födisch, H.-J., Zambelis, N. & Egg, D. Contraceptive effect of iron: Local compatibility of vaginally applied iron in rats and mice. Contraception 6, 65–70 (1972).
Google Scholar
Loewit, K., Zambelis, N. & Egg, D. Contraceptive effect of iron. Reduced fertility after vaginal application of iron chloride in rats. Contraception 4, 91–96 (1971).
Google Scholar
Liu, Y. et al. Effects of ferroptosis on male reproduction. Int. J. Mol. Sci. 23, 7139 (2022).
Google Scholar
Wellejus, A., Poulsen, H. E. & Loft, S. Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro. Free Radic. Res. 32, 75–83 (2000).
Google Scholar
Yang, B. Y. The long-term safety of use of the stainless steel IUD: over 20 years use. Clinical and pathological analysis. Shengzhi. Yu Biyun. 8, 9–14 (1988).
Google Scholar
Yang, J. et al. The progress in titanium alloys used as biomedical implants: from the view of reactive oxygen species. Front. Bioeng. Biotechnol. 10, (2022).
Alvarez, F. et al. Decrease in cytotoxicity of copper-based intrauterine devices (IUD) Pretreated with 6-mercaptopurine and pterin as biocompatible corrosion inhibitors. ACS Appl. Mater. Interfaces 5, 249–255 (2013).
Google Scholar
Ludwin, A., Martins, W. P. & Ludwin, I. Uterine cavity imaging, volume estimation and quantification of degree of deformity using automatic volume calculation: description of technique. Ultrasound Obstet. Gynecol. 50, 138–140 (2017).
Google Scholar
Tallman, D. E. Encyclopedia of Electrochemistry. Volume 4. Corrosion and Oxide Films Edited by Martin Stratmann (Max-Planck Institut für Eisenforschung, Dusseldorf) and Gerald S. Frankel (The Ohio State University). Series Edited by Allen J. Bard and Martin Stratmann. W. J. Am. Chem. Soc. 126, 979–980 (2004).
Shirai, E., Iizuka, R. & Notake, Y. Analysis of human uterine fluid protein. Fertil. Steril. 23, 522–528 (1972).
Google Scholar
Hedberg, Y. S. Role of proteins in the degradation of relatively inert alloys in the human body. npj Mater. Degrad. 2, 26 (2018).
Google Scholar
Mora, N., Cano, E., Mora, E. M. & Bastidas, J. M. Influence of pH and oxygen on copper corrosion in simulated uterine fluid. Biomaterials 23, 667–671 (2002).
Google Scholar
Reed, B. G. & Carr, B. R. The Normal Menstrual Cycle and the Control of Ovulation. (MDText.com, Inc., South Dartmouth (MA), 2000).
Ortiz, M. E., Croxatto, H. B. & Bardin, C. W. Mechanisms of action of intrauterine devices. Obstet. Gynecol. Surv. 51, S42–51 (1996).
Google Scholar
Wei, Y., Zhang, C., Fan, G. & Meng, L. Organoids as novel models for embryo implantation study. Reprod. Sci. 28, 1637–1643 (2021).
Google Scholar
Valdés, J. et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597 (2008).
Google Scholar
Downey, M. M. B., Patteson Poehling, C. & O’Connell, S. Measurement and operationalization of the social determinants of health and long-acting reversible contraception use in the U.S.: a systematic scoping review. AJPM Focus 1, (2022).
Wulifan, J. K., Brenner, S., Jahn, A. & De Allegri, M. A scoping review on determinants of unmet need for family planning among women of reproductive age in low and middle income countries. BMC Womens. Health 16, 2 (2016).
Google Scholar
Ali, M., Folz, R. & Farron, M. Expanding choice and access in contraception: an assessment of intrauterine contraception policies in low and middle-income countries. BMC Public Health 19, 1707 (2019).
Google Scholar
Milošev, I. & Scully, J. R. Challenges for the corrosion science, engineering, and technology community as a consequence of growing demand and consumption of materials: a sustainability issue. Corrosion 79, 988–996 (2023).
Google Scholar
Olson, E. M. et al. Health care barriers to provision of long-acting reversible contraception in Wisconsin. WMJ 117, 149–155 (2018).
Google Scholar
Fund, U. N. P. Seeing the Unseen: The case for action in the neglected crisis of unintended pregnancy. (2022).
van Kets, H. et al. The frameless GyneFix® intrauterine implant: a major improvement in efficacy, expulsion and tolerance. Adv. Contracept. 11, 131–142 (1995).
Google Scholar
link